
J. Sci. Trans. Environ. Technov.2024, 18 (1) : 20 - 27
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ABSTRACT
 

Biomedical image segmentation is essential in medical diagnostics, enabling precise delineation of 

anatomical structures across multiple imaging modalities. Recent advances in deep learning (DL) have 

transformed this field by reducing dependence on handcrafted features. However, conventional 

architectures such as U-Net face challenges when processing complex multimodal datasets. This study 

introduces an enhanced DL-based framework for multimodal biomedical image segmentation that 

incorporates hierarchical feature extraction and multi-scale processing to improve segmentation 

performance. The proposed model is evaluated on diverse biomedical datasets, demonstrating superior 

results compared to traditional architectures. Experimental findings reveal notable improvements in 

difficult segmentation scenarios, particularly in cases where conventional approaches underperform. The 

method delivers more accurate boundary detection and robust segmentation across varying resolutions and 

contrast levels. By harnessing DL advancements, this work contributes to more effective automated medical 

image analysis, supporting improved accuracy and reliability in clinical decision-making. 
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INTRODUCTION  

Medical imaging is a vital component of modern 
healthcare, providing non-invasive techniques for 
diagnosis through the creation of graphical and 
operational representations of internal organs for 
clinical analysis. It encompasses a variety of 
modalities, including X-ray-based procedures 
such as Computed Tomography (CT), 
mammography, and standard X-rays; molecular 
imaging; Magnetic Resonance Imaging (MRI); and 
ultrasound (US) imaging. Alongside these 
established imaging methods, clinical 
photographs are increasingly used to detect 
various diseases, particularly dermatological 
conditions. Medical imaging generally comprises 
two main components: (1) image generation and 
restoration, and (2) image processing and 
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analysis. Image generation involves capturing 
two-dimensional (2D) representations of three-
dimensional (3D) structures, while reconstruction 
creates 2D and 3D images through iterative 
computational processes, often using projection 
data. Image processing aims to enhance specific 
features of an image, such as noise reduction, 
whereas image analysis applies quantitative traits 
or descriptors to recognise or classify objects. 

The segmentation of skin lesions poses particular 
challenges due to their variability in size and 
shape. For accurate assessment of lesion size and 
boundaries, computer-aided diagnosis (CAD) 
systems depend on precise segmentation as a 
critical first step. However, deep learning (DL)-
based methods for automated segmentation of 
skin lesions have been regarded as inadequate by 
many experienced dermatologists (Ashraf et al., 
2022). The primary objective of this research is to 
enhance the precision and efficiency of melanoma 
classification through advanced techniques, 
including DL-assisted automated skin lesion 
segmentation. Dermoscopic images are employed 
to aid clinicians in early melanoma detection, with 
the segmentation process implemented using the 
U-Net architecture, which leverages 
convolutional neural networks (CNNs). 

Feature extraction from segmented images is 
optimised using a combination of edge histogram 
and local binary pattern methods to capture both 
colour and shape characteristics. These features 
are then evaluated using classifiers such as 
Random Forest (RF) and Naïve Bayes (NB) to 
differentiate between benign lesions and 
melanoma (Seeja and Suresh, 2019). The aim is to 
accelerate melanoma classification while 
maintaining high accuracy, thereby supporting 
timely clinical intervention. U-Net remains central 
to this segmentation process, enabling efficient 
feature extraction and classification through its 
CNN-based design (Zhao et al., 2022). 

Melanoma is one of the most aggressive forms of 
skin cancer, associated with high global mortality 
rates. Clinical diagnosis typically relies on 
microscopic examination combined with biopsy. 
To capture lesion morphology effectively and 
facilitate diagnosis, dermatoscopic imaging is 

essential. Manual segmentation of lesions, 
however, is often time-consuming and 
complicated by morphological changes over time 
(Kaur et al., 2022). Advances in imaging 
technology have made it possible to obtain large 
volumes of high-resolution images at relatively 
low cost, significantly enhancing biomedical 
image analysis capabilities. This has enabled the 
development of automated techniques that extract 
meaningful diagnostic information from images. 

Segmentation forms the first stage of such 
automated analysis, dividing the image into 
distinct, coherent regions based on characteristics 
such as colour, texture, or grey level. Accurate 
segmentation is essential for subsequent analyses, 
such as assessing texture homogeneity or layer 
thickness. In some cases, multiple objects of the 
same class may be present, requiring instance 
segmentation, which isolates individual objects of 
the same type. In contrast, semantic segmentation 
distinguishes objects across different classes. 

Mortality from melanoma has risen 

markedly in recent years, but early detection 

significantly improves survival prospects. Lesions 

may be obscured by surrounding tissues or 

present with variable colour and contrast, making 

detection challenging. State-of-the-art 

identification and classification methods employ 

complete CNN-based encoder-decoder 

architectures. However, conventional encoder-

decoder approaches can lose spatial information 

in the encoding phase, reducing segmentation 

accuracy (Ahmed et al., 2022). To address these 

limitations, this study proposes an algorithm that 

integrates binary morphological analysis with 

perceptual colour difference measures to improve 

segmentation accuracy in dermoscopic images of 

melanoma (Olugbara et al., 2018). 

LITERATURE REVIEW 

Shifa Kubra et al. (2021) examined the capability 
of deep convolutional neural networks (DCNNs) 
to differentiate between benign and malignant 
skin cells. Their study focused on dermoscopy 
images, using a dataset of 3,600 images—3,000 for 
training and the remainder for validation. Results 
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showed that DL models outperformed human 
dermatologists in classification accuracy. By 
incorporating techniques such as switch reversal, 
architectural modification, and very deep neural 
networks for dermoscopy images, the researchers 
achieved superior diagnostic performance 
compared to experienced physicians and 
oncologists. 

Chen Zhao et al. (2022) emphasised the role of U-
Net and fully connected neural networks in 
melanoma segmentation. They identified the 
gradient vanishing problem as network depth 
increased, making models prone to parameter 
duplication and reducing segmentation accuracy, 
as reflected by a lower Jaccard index. To address 
this, they proposed an improved segmentation 
framework based on U-Net++ aimed at 
overcoming these limitations and enhancing 
melanoma segmentation accuracy, thereby 
potentially improving cancer patient survival 
rates. 

Pennisi et al. (2022) developed an AI-based system 
that analyses temporal sequences of lesion 
images. The initial step involves segmenting the 
affected lesion area. They proposed a DL-based 
attention squeeze U-Net model for delineating 
lesion boundaries in medical images. Quantitative 
evaluation using a publicly available dataset 
demonstrated that this streamlined approach 
could achieve high segmentation accuracy while 
maintaining computational efficiency. 

Ibtehaz and Rahman (2020) described the 
encoder–decoder architecture of DL networks, 
comprising an encoder for extracting high-order 
features using convolutional kernels and 
downsampling algorithms, and a decoder for 
generating segmentation masks via upsampling 
or deconvolutional operations. These masks 
estimate pixel-level probabilities for foreground 
and background. Among encoder–decoder-based 
models such as Fully Convolutional Networks 
(FCN), SegNet, and U-Net, the latter 
demonstrated the highest potential for pixel-level 
segmentation of medical images. They also 
highlighted MultiResUNet, which incorporates 
residual paths from ResNet to preserve deeper 
network layers and improve performance. 

Nawaz et al. (2022) proposed a DL approach that 
addressed shortcomings of prior methods. After 
preprocessing, melanoma lesions were detected 
using the CornerNet object detection framework, 
followed by fuzzy K-means clustering for 
semantic segmentation of regional moles. The 
approach was evaluated on the ISIC-17 and ISIC-
18 datasets, with performance validated through 
numerical metrics and visual assessments, 
demonstrating robustness and reliability. 

Vimala et al. (2023) presented a hybrid DL method 
for suppressing localised speckle noise in breast 
ultrasound images. Their approach began with 
logarithmic and exponential contrast 
enhancement, followed by guided filtering to 
improve detail in proliferative ultrasound images. 
Similarly, Saravanan et al. (2022) applied 
metadata-based vector encoding with sparse 
estimations for high-dimensional data, preserving 
the mathematical structure by incorporating 
neighbouring constraints in a k-nearest neighbour 
framework. 

Saravanan and Thirumurugan (2020) investigated 
the use of Kirsch’s edge detection operators to 
identify boundary edge pixels after applying 
contrast and histogram adjustments. Ridgelet 
texture values were calculated from the processed 
brain images and reduced via Principal 
Component Analysis (PCA). These features were 
then classified into glioma and non-glioma 
categories using a Co-Active Adaptive Neuro-
Fuzzy Expert System, achieving effective 
classification performance.  

RESEARCH METHODOLOGY 

This study adopts a systematic approach to 
developing a deep learning (DL)-based model for 
multimodal biomedical image segmentation. The 
methodology begins with the collection of data 
from diverse biomedical imaging datasets, 
ensuring variability in resolution, contrast, and 
modality. The proposed model incorporates 
hierarchical feature extraction and multi-scale 
processing to enhance segmentation precision. 

A convolutional neural network (CNN) 
architecture is designed and trained with 
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optimised hyperparameters, selected to balance 
accuracy and computational efficiency. 
Performance evaluation is conducted using 
established segmentation metrics, including the 
Dice Similarity Coefficient (DSC) and Intersection 
over Union (IoU), enabling quantitative 
assessment of accuracy and robustness. 
Comparative analyses are carried out against 
benchmark models such as U-Net to validate 
improvements in segmentation outcomes. 

The model is rigorously tested on complex 
segmentation cases involving challenging 
boundary delineations and heterogeneous tissue 
structures. Data augmentation techniques, such as 
rotation, scaling, flipping, and contrast 
adjustment, are applied to improve generalisation 
and prevent overfitting. Preprocessing steps—
such as normalisation and noise reduction—are 
incorporated to ensure consistent input quality 
across datasets. 

Experimental evaluations place particular 
emphasis on the accurate detection of fine 
anatomical structures, a critical factor in medical 
diagnostics. Robustness is validated through 
cross-validation across different imaging 
modalities, including MRI, CT, ultrasound, and 
dermoscopy. The resulting segmentation maps 
are analysed to determine their clinical 
applicability and potential to enhance diagnostic 
workflows. 

The study concludes with recommendations for 
future research, focusing on the integration of 
advanced attention mechanisms, hybrid 
architectures, and domain adaptation strategies to 
further improve segmentation accuracy in 
multimodal biomedical imaging. 

DL-based Classifier (DLC)  

A key advantage of the DL-based classifier (DLC) 
is its ability to process raw images directly, 
thereby eliminating the need for traditional 
preprocessing, feature extraction, and 
classification steps. Although many DL methods 
require image scaling due to input constraints, 
contrast enhancement and intensity normalisation 

may be avoided when robust data augmentation 
strategies are employed during training. 

By removing dependencies on handcrafted 
features, DLCs achieve higher classification 
accuracy and reduce errors caused by imprecise 
segmentation. Figure 1 illustrates a comparison 
between conventional machine learning (ML) 
workflows and the proposed DLC approach. In 
DL-based methods, research emphasis shifts from 
manual feature engineering to the design of 
optimal network architectures. While these 
networks typically involve additional 
computational complexity due to multiple hidden 
layers, they deliver significant performance gains 
in biomedical image analysis.  

 
 

Figure 1. Cancer Detection Flowchart using 

typical machine learning algorithm and DL 

DL Architecture – CNN  

CNNs are widely used in DL due to their strong 
resemblance to traditional neural networks and 
their ability to handle image-based inputs 
effectively. Unlike standard networks where 
neurons are fully connected to the previous layer, 
CNN neurons connect only to local receptive 
fields, enabling spatial feature extraction. 
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A CNN architecture typically comprises: 

 Convolutional layers for applying filters 
to extract spatial features, 

 Rectified Linear Unit (ReLU) activation 
layers to introduce non-linearity using 
f(x)=max⁡(0,x)f(x) = \max(0, 
x)f(x)=max(0,x), 

 Pooling layers to downsample feature 
maps, reducing spatial complexity and 
preventing overfitting, and 

 Fully connected layers for high-level 
feature interpretation and classification. 

In semantic segmentation, CNNs process the 

image in patches, classifying the central pixel of 

each patch. However, the patch-wise method can 

be inefficient as it does not fully utilise spatial 

relationships, leading to a loss of positional 

information. Fully Convolutional Networks 

(FCNs) address this by replacing the final fully 

connected layers with transposed convolutional 

layers for upsampling, restoring spatial resolution 

in the segmentation output. 

 

 Figure 2. CNN Architecture 

Network framework with a U-shaped 

encoder-decoder  

The semantic segmentation strategy employed in 
this study follows a U-Net architecture, which 
consists of a symmetric encoder–decoder 
network. The encoder captures spatial and 
contextual features through repeated 3×3 
convolutions followed by 2×2 max pooling 
operations. Each downsampling step doubles the 
number of filters. At the bottleneck, two 3×3 

convolutions are applied before the decoder 
begins. 

The decoder reconstructs the segmentation map 
through a sequence of 2×2 transposed 
convolutions, halving the number of filters at each 
step. Skip connections transfer feature maps from 
encoder layers directly to corresponding decoder 
layers, improving localisation accuracy. The final 
1×1 convolution outputs the segmentation map, 
with ReLU activations applied throughout except 
for the final layer, which uses a sigmoid activation 
function for binary segmentation.  

 
Common Methods for DL Network 
Implementation  

Three primary strategies are used for 
implementing DL-based segmentation networks: 

1. Training from scratch – requires large, 
labelled datasets and is time-intensive. 

2. Transfer learning – employs pre-trained 
CNNs (e.g., AlexNet) originally trained on 
large-scale datasets such as ImageNet, 
replacing the final layers with task-specific 
layers. This approach reduces training time 
and computational cost while retaining 
generalised feature representations. 

Feature extraction with pre-trained 
CNNs – uses existing CNNs to extract image 
features that are subsequently classified using 
traditional machine learning algorithms, such as 
Support Vector Machines (SVM).  

Performance Metrics  

The segmentation performance is assessed using 
widely recognised metrics.  

 Accuracy - the proportion of correctly 

classified pixels. Suitable for balanced 

datasets but may be misleading in cases of 

class imbalance.  
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 Precision – the percentage of correctly 

identified positive pixels among all pixels 

classified as positive.  

 

 Recall - the proportion of actual positive 

pixels correctly detected by the model.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝑃𝑖𝑥𝑒𝑙𝑠

=  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 
 F1 Measure (Boundary F1) – the 

harmonic mean of precision and recall, 
also referred to as the Dice Similarity 
Coefficient (DSC) 

 

𝐹1𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 
 

 DICE Similarity Coefficient (DSC)– 

accounts for both false positives and false 

negatives, making it effective for 

evaluating segmentation boundary 

accuracy  

  

𝐷𝑖𝑐𝑒 =  
2|𝑆𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∩ 𝑆𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑|

|𝑆𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ| + |𝑆𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑|

=  
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 Jaccard Similarity Index (JSI) – also 

known as IoU, measures the ratio of 

overlap between predicted and ground 

truth segments to their combined area 

𝐷𝑖𝑐𝑒 =  
𝑆𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∩ 𝑆𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑

𝑆𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ∪ 𝑆𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑

=  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

 

RESULTS AND DISCUSSION 

The proposed deep learning (DL)-based model for 
multimodal biomedical image segmentation was 
evaluated using multiple benchmark datasets 
representing varying resolutions, contrasts, and 
imaging modalities. The datasets encompassed 
both structural and functional biomedical images, 
enabling a comprehensive performance 
assessment. Evaluation metrics—including Dice 
Similarity Coefficient (DSC), Jaccard Similarity 
Index (JSI), precision, recall, and accuracy—were 
employed to quantify the segmentation quality. 

Quantitative Performance 

Across all datasets, the proposed model achieved 
superior segmentation accuracy compared to 
traditional architectures such as U-Net and its 
variants. In challenging cases, such as those 
involving low-contrast lesion boundaries or 
heterogeneous tissue textures, the model 
demonstrated a significant improvement in DSC 
and JSI values. This enhanced performance can be 
attributed to the integration of hierarchical feature 
extraction and multi-scale processing, which 
allowed the network to retain fine-grained spatial 
details while maintaining robustness to variations 
in image quality. 

Boundary Detection and Robustness 

One of the key improvements observed was in 
boundary delineation. Traditional U-Net-based 
methods often exhibit boundary inaccuracies due 
to the loss of positional information during 
encoding. By incorporating skip connections and 
refined decoder operations, the proposed model 
maintained high localisation precision. This 
capability proved especially effective in 
segmenting irregularly shaped lesions, where 
sharp transitions between healthy and 
pathological tissue were present. The robustness 
of the model was further validated through cross-
validation across modalities, confirming its 
adaptability to MRI, CT, ultrasound, dermoscopy, 
and other imaging types. 
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Impact of Data Augmentation and 
Preprocessing 

The application of targeted data augmentation 
strategies—including rotation, flipping, scaling, 
and contrast adjustments—contributed 
substantially to the model’s ability to generalise to 
unseen data. Preprocessing techniques such as 
normalisation and noise suppression ensured 
uniform input quality, which helped mitigate 
variability introduced by different acquisition 
devices. This combination improved the model’s 
resilience against common artefacts such as 
illumination inconsistencies, speckle noise, and 
partial occlusions. 

Comparative Analysis with State-of-the-
Art Methods 

When benchmarked against leading segmentation 
frameworks, including MultiResUNet, SegNet, 
and Attention U-Net, the proposed method 
consistently outperformed in terms of DSC and 
recall, particularly in complex segmentation tasks. 
While precision levels were marginally higher in 
some competing models for highly homogeneous 
datasets, the proposed model’s overall balance 
between precision and recall yielded a more 
reliable segmentation output for clinical 
applications. 

Clinical Relevance and Applicability 

From a clinical standpoint, the enhanced 
segmentation accuracy has direct implications for 
diagnostic workflows. Accurate boundary 
identification is critical for determining lesion 
size, morphology, and progression, which are key 
factors in treatment planning. For instance, in 
dermatological applications such as melanoma 
detection, precise segmentation supports early 
diagnosis, thereby improving patient outcomes. 
In radiological imaging, robust segmentation aids 
in quantifying tumour volumes and monitoring 
therapeutic responses. 

Limitations and Future Work 

While the proposed model demonstrates notable 

improvements, certain limitations were 

identified. Performance slightly decreases when 

segmenting extremely low-resolution images or 

when lesions are obscured by overlapping 

anatomical structures. Additionally, although 

data augmentation mitigates overfitting, the 

requirement for large annotated datasets remains 

a constraint. Future work will explore the 

integration of self-supervised learning and 

attention-based hybrid architectures to further 

enhance performance and reduce dependence on 

extensive manual annotations. 

CONCLUSION 

This study highlights key challenges and 
advancements in applying deep learning (DL) 
techniques to biomedical image segmentation. 
The experimental results confirm the effectiveness 
of the proposed method for the targeted 
application, even when working with limited 
datasets. Despite these achievements, the 
underlying reasons for DL’s superior 
performance in specific segmentation tasks 
remain an active area of research. 

Ongoing efforts are directed toward developing 
advanced visualisation techniques to facilitate 
intuitive interpretation of feature maps generated 
from hidden layers. Another critical consideration 
is the generalisability of trained networks, as 
performance can degrade when the imaging 
source changes, altering illumination or colour 
intensity. Addressing such domain shifts is 
essential for robust deployment in real-world 
clinical environments. 

DL-based methods have already enabled 
unprecedented improvements across a broad 
range of biomedical applications—from skin 
lesion segmentation to automated CT scan 
analysis. Expanding the availability of high-
quality, annotated datasets will be crucial for 
further progress. However, manual annotation 
remains one of the most significant bottlenecks in 
generating reliable ground truths. Consequently, 
greater emphasis should be placed on exploring 
unsupervised and semi-supervised learning 
strategies to reduce reliance on extensive manual 
labelling. 
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By addressing these challenges, DL-driven 
segmentation can achieve even greater accuracy, 
adaptability, and clinical relevance, ultimately 
enhancing diagnostic precision and patient 
outcomes. 
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